Ocean Systems Lab  
Ocean Systems Lab Heriot-Watt University Ocean Systems Laboratory

View Publication Details

Title: Video tracking: A concise survey
Author: Trucco, Emanuele, Plakas, Konstantinos
Year: 2006
Book / Journal: IEEE JOURNAL OF OCEANIC ENGINEERING
Pages: 520-529
Volume: 31
Abstract: This paper addresses video tracking, the problem of following moving targets automatically over a video sequence, and brings three main contributions. first, we give a concise introduction to video tracking in computer vision, including design requirements and a review of recent techniques, with some details of selected algorithms. Second, we give an overview of 28 recent papers on subsea video tracking and related motion analysis problems, arguably capturing the state-of-the-art of subsea video tracking. We summarize key features in a comparative, at-a-glance table, and discuss this work in comparison to the state-of-the-art in computer vision. Third, we identify well-proven computer vision techniques not yet embraced by the subsea research community, suggesting useful research directions for the subsea video processing community.
Keywords: ,
BibTex: @article{ ISI:000241397400024,
Author = {Trucco, Emanuele and Plakas, Konstantinos},
Title = {{Video tracking: A concise survey}},
Journal = {{IEEE JOURNAL OF OCEANIC ENGINEERING}},
Year = {{2006}},
Volume = {{31}},
Number = {{2}},
Pages = {{520-529}},
Month = {{APR}},
Abstract = {{This paper addresses video tracking, the problem of following moving
   targets automatically over a video sequence, and brings three main
   contributions. first, we give a concise introduction to video tracking
   in computer vision, including design requirements and a review of
   recent techniques, with some details of selected algorithms. Second, we
   give an overview of 28 recent papers on subsea video tracking and
   related motion analysis problems, arguably capturing the
   state-of-the-art of subsea video tracking. We summarize key features in
   a comparative, at-a-glance table, and discuss this work in comparison
   to the state-of-the-art in computer vision. Third, we identify
   well-proven computer vision techniques not yet embraced by the subsea
   research community, suggesting useful research directions for the
   subsea video processing community.}},
DOI = {{10.1109/JOE.2004.839933}},
ISSN = {{0364-9059}},
Unique-ID = {{ISI:000241397400024}},

  © 2008-2017 HW Ocean Systems Laboratory